Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.424
Filtrar
1.
Nutrients ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732509

RESUMEN

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Eugenol , Mitosis , Especies Reactivas de Oxígeno , Animales , Adipogénesis/efectos de los fármacos , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Mitosis/efectos de los fármacos , Eugenol/farmacología , Eugenol/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , PPAR gamma/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Metabolismo de los Lípidos/efectos de los fármacos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Antioxidantes/farmacología
2.
Cell Signal ; 119: 111172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604342

RESUMEN

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Simvastatina , Simvastatina/farmacología , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Células HeLa , Proteínas de Unión al GTP Monoméricas/metabolismo , Mitosis/efectos de los fármacos , División Celular/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
3.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675528

RESUMEN

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Glioblastoma , S-Adenosilmetionina , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , S-Adenosilmetionina/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Aurora Quinasa B/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Recombinasa Rad51/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Mitosis/efectos de los fármacos
4.
Phytomedicine ; 128: 155551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569293

RESUMEN

BACKGROUND: Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE: This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS: Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS: Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS: These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.


Asunto(s)
Proliferación Celular , Citratos , Proteína Forkhead Box O1 , Obesidad , Proteínas Quinasas S6 Ribosómicas 90-kDa , Animales , Ratones , Células 3T3-L1/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Proliferación Celular/efectos de los fármacos , Citratos/farmacología , Citratos/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Proteína Forkhead Box O1/antagonistas & inhibidores , Proteína Forkhead Box O1/metabolismo , Ratones Endogámicos C57BL , Mitosis/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Science ; 383(6690): 1441-1448, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547292

RESUMEN

Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.


Asunto(s)
Proliferación Celular , Mitosis , Neoplasias , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina Tiolesterasa , Humanos , Proliferación Celular/genética , Inestabilidad Genómica , Mitosis/efectos de los fármacos , Mitosis/genética , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Línea Celular Tumoral , Quinasa Tipo Polo 1/metabolismo , Antimitóticos/farmacología , Resistencia a Antineoplásicos
6.
Cell Tissue Res ; 392(3): 733-743, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36988705

RESUMEN

The non-receptor tyrosine kinase Src plays a key role in cell division, migration, adhesion, and survival. Src is overactivated in several cancers, where it transmits signals that promote cell survival, mitosis, and other important cancer hallmarks. Src is therefore a promising target in cancer therapy, but the underlying mechanisms are still uncertain. Here we show that Src is highly conserved across different species. Src expression increases during mitosis and is localized to the chromosomal passenger complex. Knockdown or inhibition of Src induces multipolar spindle formation, resulting in abnormal expression of the Aurora B and INCENP components of the chromosomal passenger complex. Molecular mechanism studies have found that Src interacts with and phosphorylates INCENP. This then leads to incorrect chromosome arrangement and segregation, resulting in cell division failure. Herein, Src and chromosomal passenger complex co-localize and Src inhibition impedes mitotic progression by inducing multipolar spindle formation. These findings provide novel insights into the molecular basis for using Src inhibitors to treat cancer.


Asunto(s)
Antineoplásicos , Genes src , Mitosis , Proteínas Proto-Oncogénicas pp60(c-src) , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Citoesqueleto/metabolismo , Genes src/efectos de los fármacos , Mitosis/efectos de los fármacos , Huso Acromático/genética , Huso Acromático/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Antineoplásicos/farmacología
7.
J Biol Chem ; 298(6): 101939, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35436470

RESUMEN

Microtubule targeting agents (MTAs) are widely used cancer chemotherapeutics which conventionally exert their effects during mitosis, leading to mitotic or postmitotic death. However, accumulating evidence suggests that MTAs can also generate death signals during interphase, which may represent a key mechanism in the clinical setting. We reported previously that vincristine and other microtubule destabilizers induce death not only in M phase but also in G1 phase in primary acute lymphoblastic leukemia cells. Here, we sought to investigate and compare the pathways responsible for phase-specific cell death. Primary acute lymphoblastic leukemia cells were subjected to centrifugal elutriation, and cell populations enriched in G1 phase (97%) or G2/M phases (80%) were obtained and treated with vincristine. We found death of M phase cells was associated with established features of mitochondrial-mediated apoptosis, including Bax activation, loss of mitochondrial transmembrane potential, caspase-3 activation, and nucleosomal DNA fragmentation. In contrast, death of G1 phase cells was not associated with pronounced Bax or caspase-3 activation but was associated with loss of mitochondrial transmembrane potential, parylation, nuclear translocation of apoptosis-inducing factor and endonuclease G, and supra-nucleosomal DNA fragmentation, which was enhanced by inhibition of autophagy. The results indicate that microtubule depolymerization induces distinct cell death pathways depending on during which phase of the cell cycle microtubule perturbation occurs. The observation that a specific type of drug can enter a single cell type and induce two different modes of death is novel and intriguing. These findings provide a basis for advancing knowledge of clinical mechanisms of MTAs.


Asunto(s)
Apoptosis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Vincristina , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ciclo Celular , Activación Enzimática/efectos de los fármacos , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Vincristina/metabolismo , Vincristina/farmacología , Vincristina/uso terapéutico , Proteína X Asociada a bcl-2/metabolismo
8.
Biomed Pharmacother ; 147: 112645, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35051862

RESUMEN

Plants are a rich source for bioactive compounds. However, plant extracts can harbor a mixture of bioactive molecules that promote divergent phenotypes and potentially have confounding effects in bioassays. Even with further purification and identification, target deconvolution can be challenging. Corynoline and acetylcorynoline, are phytochemicals that were previously isolated through a screen for compounds able to induce mitotic arrest and polyploidy in oncogene expressing retinal pigment epithelial (RPE) cells. Here, we shed light on the mechanism by which these phytochemicals can attack human cancer cells. Mitotic arrest was coincident to the induction of centrosome amplification and declustering, causing multi-polar spindle formation. Corynoline was demonstrated to have true centrosome declustering activity in a model where A549 cells were chemically induced to have more than a regular complement of centrosomes. Corynoline could inhibit the centrosome clustering required for pseudo-bipolar spindle formation in these cells. The activity of AURKB, but not AURKA or polo-like kinase 4, was diminished by corynoline. It only partially inhibited AURKB, so it may be a partial antagonist or corynoline may work upstream on an unknown regulator of AURKB activity or localization. Nonetheless, corynoline and acetylcorynoline inhibited the viability of a variety of human cancer derived cell lines. These phytochemicals could serve as prototypes for a next-generation analog with improved potency, selectivity or in vivo bioavailability. Such an analog could be useful as a non-toxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.


Asunto(s)
Aurora Quinasa B/efectos de los fármacos , Alcaloides de Berberina/farmacología , Mitosis/efectos de los fármacos , Fitoquímicos/farmacología , Poliploidía , Células A549 , Apoptosis/efectos de los fármacos , Aurora Quinasa A/efectos de los fármacos , Línea Celular Tumoral , Centrosoma/efectos de los fármacos , Humanos
9.
Cells ; 11(2)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35053421

RESUMEN

Recurrence in hepatocellular carcinoma (HCC) after conventional treatments is a crucial challenge. Despite the promising progress in advanced targeted therapies, HCC is the fourth leading cause of cancer death worldwide. Radionuclide therapy can potentially be a practical targeted approach to address this concern. Rhenium-188 (188Re) is a ß-emitting radionuclide used in the clinic to induce apoptosis and inhibit cell proliferation. Although adherent cell cultures are efficient and reliable, appropriate cell-cell and cell-extracellular matrix (ECM) contact is still lacking. Thus, we herein aimed to assess 188Re as a potential therapeutic component for HCC in 2D and 3D models. The death rate in treated Huh7 and HepG2 lines was significantly higher than in untreated control groups using viability assay. After treatment with 188ReO4, Annexin/PI data indicated considerable apoptosis induction in HepG2 cells after 48 h but not Huh7 cells. Quantitative RT-PCR and western blotting data also showed increased apoptosis in response to 188ReO4 treatment. In Huh7 cells, exposure to an effective dose of 188ReO4 led to cell cycle arrest in the G2 phase. Moreover, colony formation assay confirmed post-exposure growth suppression in Huh7 and HepG2 cells. Then, the immunostaining displayed proliferation inhibition in the 188ReO4-treated cells on 3D scaffolds of liver ECM. The PI3-AKT signaling pathway was activated in 3D culture but not in 2D culture. In nude mice, Huh7 cells treated with an effective dose of 188ReO4 lost their tumor formation ability compared to the control group. These findings suggest that 188ReO4 can be a potential new therapeutic agent against HCC through induction of apoptosis and cell cycle arrest and inhibition of tumor formation. This approach can be effectively combined with antibodies and peptides for more selective and personalized therapy.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Radioisótopos/farmacología , Renio/farmacología , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fase G2/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ratones Desnudos , Mitosis/efectos de los fármacos , Fenotipo , Tolerancia a Radiación/efectos de los fármacos
10.
J Nat Prod ; 85(1): 136-147, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35026948

RESUMEN

Natural products, which are enzymatically biosynthesized, have a broad range of biological activities. In particular, many flavonoids are known to contribute to human health with low toxicity. We previously reported that novel benzo[b]thiophenyl (BT) flavones with a 10π-electron BT ring B replacing the usual 6π-electron phenyl ring showed potent antiproliferative activity against human tumor cell lines. Interestingly, the activity profiles against cell cycle progression of the BT-flavones totally changed depending on the combination of substituents at the C-3 and C-5 positions. This finding encouraged an extension of these studies on the impact of BT to related flavonoids, such as chalcones, isoflavones, and aurones. Accordingly, 10 isoflavones, 29 chalcones, and four aurones were synthesized and evaluated for antiproliferative activity against five human tumor cell lines including a multi-drug-resistant cell line. Among these compounds, BT-isoflavone 7, BT-chalcones 48, 52, 57, 66, and 77, and BT-aurone 80 displayed significant antiproliferative effects against all tested tumor cell lines. The structure-antiproliferative activity relationships clearly demonstrated the importance of BT instead of phenyl as ring B for the isoflavone and chalcones, but not the aurones. Flow cytometry and immunocytochemical studies demonstrated that the active BT-flavonoids led to cell cycle arrest at the prometaphase by induction of multipolar spindle formation. The present studies should contribute greatly to the synthesis and functional analysis of biologically active flavonoid derivatives for chemical space expansion.


Asunto(s)
Flavonoides/química , Mitosis/efectos de los fármacos , Tiofenos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Electrones , Flavonoides/farmacología , Humanos , Relación Estructura-Actividad
11.
BMC Plant Biol ; 22(1): 46, 2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35065609

RESUMEN

BACKGROUND: Land plants respond to drought and salinity by employing multitude of sophisticated mechanisms with physiological and developmental consequences. Abscisic acid-mediated signaling pathways have evolved as land plant ancestors explored their habitats toward terrestrial dry area, and now play major roles in hyperosmotic stress responses in flowering plants. Green algae living in fresh water habitat do not possess abscisic acid signaling pathways but need to cope with increasing salt concentrations or high osmolarity when challenged with adverse aquatic environment. Hyperosmotic stress responses in green algae are largely unexplored. RESULTS: In this study, we characterized hyperosmotic stress-induced cytoskeletal responses in Chlamydomonas reinhardtii, a fresh water green algae. The Chlamydomonas PROPYZAMIDE-HYPERSENSITEVE 1 (PHS1) tubulin kinase quickly and transiently phosphorylated a large proportion of cellular α-tubulin at Thr349 in G1 phase and during mitosis, which resulted in transient disassembly of microtubules, when challenged with > 0.2 M sorbitol or > 0.1 M NaCl. By using phs1 loss-of-function algal mutant cells, we demonstrated that transient microtubule destabilization by sorbitol did not affect cell growth in G1 phase but delayed mitotic cell cycle progression. Genome sequence analyses indicate that PHS1 genes evolved in ancestors of the Chlorophyta. Interestingly, PHS1 genes are present in all sequenced genomes of freshwater Chlorophyta green algae (including Chlamydomonas) but are absent in some marine algae of this phylum. CONCLUSION: PHS1-mediated tubulin phosphorylation was found to be partly responsible for the efficient stress-responsive mitotic delay in Chlamydomonas cells. Ancient hyperosmotic stress-triggered cytoskeletal remodeling responses thus emerged when the PHS1 tubulin kinase gene evolved in freshwater green algae.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Microtúbulos/metabolismo , Presión Osmótica/fisiología , Proteínas de Plantas/metabolismo , Tubulina (Proteína)/metabolismo , Técnicas de Cultivo de Célula/métodos , División Celular , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlorophyta/genética , Fase G1/efectos de los fármacos , Mitosis/efectos de los fármacos , Fosforilación , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estrés Salino , Sorbitol/farmacología , Treonina
12.
Cells ; 11(1)2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011730

RESUMEN

Anthraquinone derivatives exhibit various biological activities, e.g., antifungal, antibacterial and in vitro antiviral activities. They are naturally produced in many fungal and plant families such as Rhamnaceae or Fabaceae. Furthermore, they were found to have anticancer activity, exemplified by mitoxantrone and pixantrone, and many are well known redox-active compounds. In this study, various nature inspired synthetic anthraquinone derivatives were tested against colon, prostate, liver and cervical cancer cell lines. Most of the compounds exhibit anticancer effects against all cell lines, therefore the compounds were further studied to determine their IC50-values. Of these compounds, 1,4-bis(benzyloxy)-2,3-bis(hydroxymethyl)anthracene-9,10-dione (4) exhibited the highest cytotoxicity against PC3 cells and was chosen for a deeper look into its mechanism of action. Based on flow cytometry, the compound was proven to induce apoptosis through the activation of caspases and to demolish the ROS/RNS and NO equilibrium in the PC3 cell line. It trapped cells in the G2/M phase. Western blotting was performed for several proteins related to the effects observed. Compound 4 enhanced the production of PARP and caspase-3. Moreover, it activated the conversion of LC3A/B-I to LC3A/B-II showing that also autophagy plays a role in its mechanism of action, and it caused the phosphorylation of p70 s6 kinase.


Asunto(s)
Antraquinonas/química , Antraquinonas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Adenina/análogos & derivados , Adenina/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN-Topoisomerasas/metabolismo , Emodina/química , Emodina/farmacología , Activación Enzimática/efectos de los fármacos , Fase G2/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Mitosis/efectos de los fármacos
13.
J Toxicol Environ Health A ; 85(4): 131-142, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34612163

RESUMEN

Melanoma is the most aggressive type of skin cancer, and thus it is important to develop new drugs for its treatment. The present study aimed to examine the antitumor effects of solamargine a major alkaloid heteroside present in Solanum lycocarpum fruit. In addition solamargine was incorporated into nanoparticles (NP) of yttrium vanadate functionalized with 3-chloropropyltrimethoxysilane (YVO4:Eu3+:CPTES:SM) to determine antitumor activity. The anti-melanoma assessment was performed using a syngeneic mouse melanoma model B16F10 cell line. In addition, systemic toxicity, nephrotoxic, and genotoxic parameters were assessed. Solamargine, at doses of 5 or 10 mg/kg/day administered subcutaneously to male C57BL/6 mice for 5 days, decreased tumor size and frequency of mitoses in tumor tissue, indicative of a decrease in cell proliferation. Treatments with YVO4:Eu3+:CPTES:SM significantly reduced the number of mitoses in tumor tissue, associated with no change in tumor size. There were no apparent signs of systemic toxicity, nephrotoxicity, and genotoxicity initiated by treatments either with solamargine alone or plant alkaloid incorporated into NP. The animals treated with YVO4:Eu3+:CPTES:SM exhibited significant increase in spleen weight accompanied by no apparent histological changes in all tissues examined. In addition, animals treated with solamargine (10 mg/kg/day) and YVO4:Eu3+:CPTES:SM demonstrated significant reduction in hepatic DNA damage which was induced by tumor growth. Therefore, data suggest that solamargine may be considered a promising candidate in cancer therapy with no apparent toxic effects.


Asunto(s)
Antineoplásicos/farmacología , Melanoma Experimental/tratamiento farmacológico , Alcaloides Solanáceos/farmacología , Animales , Antineoplásicos/toxicidad , Línea Celular Tumoral , Daño del ADN , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitosis/efectos de los fármacos , Nanopartículas/administración & dosificación , Silanos/química , Alcaloides Solanáceos/toxicidad , Itrio/química
14.
Angew Chem Int Ed Engl ; 61(9): e202115846, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34958711

RESUMEN

Eg5 is a kinesin motor protein that is responsible for bipolar spindle formation and plays a crucial role during mitosis. Loss of Eg5 function leads to the formation of monopolar spindles, followed by mitotic arrest, and subsequent cell death. Several cell-permeable small molecules have been reported to inhibit Eg5 and some have been evaluated as anticancer agents. We now describe the design, synthesis, and biological evaluation of photoswitchable variants with five different pharmacophores. Our lead compound Azo-EMD is a cell permeable azobenzene that inhibits Eg5 more potently in its light-induced cis form. This activity decreased the velocity of Eg5 in single-molecule assays, promoted formation of monopolar spindles, and led to mitotic arrest in a light dependent way.


Asunto(s)
Compuestos Azo/farmacología , Cinesinas/antagonistas & inhibidores , Mitosis/efectos de los fármacos , Compuestos Azo/síntesis química , Compuestos Azo/química , Humanos , Cinesinas/metabolismo , Procesos Fotoquímicos , Huso Acromático/efectos de los fármacos
15.
Sci Rep ; 11(1): 23490, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873207

RESUMEN

Paclitaxel is an anti-microtubule agent that has been shown to induce cell death in gastric cancer. However, the detailed mechanism of action is unclear. In this study, we reveal that the paclitaxel-induced cell death mechanism involves mitotic catastrophe, autophagy and apoptosis in AGS cells. Paclitaxel induced intrinsic apoptosis by activating caspase-3, caspase-9 and PARP. In addition, the significant increase in autophagy marker LC3B-II, together with Atg5, class III PI3K and Beclin-1, and the down-regulation of p62 following paclitaxel treatment verified that paclitaxel induced autophagy. Further experiments showed that paclitaxel caused mitotic catastrophe, cell cycle arrest of the accumulated multinucleated giant cells at the G2/M phase and induction of cell death in 24 h. Within 48 h, the arrested multinucleated cells escaped mitosis by decreasing cell division regulatory proteins and triggered cell death. Cells treated with paclitaxel for 48 h were grown in fresh medium for 24 h and checked for CDC2, CDC25C and lamin B1 protein expressions. These proteins had decreased significantly, indicating that the remaining cells became senescent. In conclusion, it is suggested that paclitaxel-induced mitotic catastrophe is an integral part of the cell death mechanism, in addition to apoptosis and autophagy, in AGS cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Mitosis/efectos de los fármacos , Paclitaxel/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/farmacología , Caspasas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
16.
Cells ; 10(12)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34943948

RESUMEN

Glioblastoma (GBM) is the most common brain tumor in adults, which is very aggressive, with a very poor prognosis that affects men twice as much as women, suggesting that female hormones (estrogen) play a protective role. With an in silico approach, we highlighted that the expression of the membrane G-protein-coupled estrogen receptor (GPER) had an impact on GBM female patient survival. In this context, we explored for the first time the role of the GPER agonist G-1 on GBM cell proliferation. Our results suggested that G-1 exposure had a cytostatic effect, leading to reversible G2/M arrest, due to tubulin polymerization blockade during mitosis. However, the observed effect was independent of GPER. Interestingly, G-1 potentiated the efficacy of temozolomide, the current standard chemotherapy treatment, since the combination of both treatments led to prolonged mitotic arrest, even in a temozolomide less-sensitive cell line. In conclusion, our results suggested that G-1, in combination with standard chemotherapy, might be a promising way to limit the progression and aggressiveness of GBM.


Asunto(s)
Ciclopentanos/farmacología , Glioblastoma/tratamiento farmacológico , Quinolinas/farmacología , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Temozolomida/farmacología , Tubulina (Proteína)/genética , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Mitosis/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885726

RESUMEN

Previously, we reported the in vitro growth inhibitory effect of diarylpentanoid BP-M345 on human cancer cells. Nevertheless, at that time, the cellular mechanism through which BP-M345 exerts its growth inhibitory effect remained to be explored. In the present work, we report its mechanism of action on cancer cells. The compound exhibits a potent tumor growth inhibitory activity with high selectivity index. Mechanistically, it induces perturbation of the spindles through microtubule instability. As a consequence, treated cells exhibit irreversible defects in chromosome congression during mitosis, which induce a prolonged spindle assembly checkpoint-dependent mitotic arrest, followed by massive apoptosis, as revealed by live cell imaging. Collectively, the results indicate that the diarylpentanoid BP-M345 exerts its antiproliferative activity by inhibiting mitosis through microtubule perturbation and causing cancer cell death, thereby highlighting its potential as antitumor agent.


Asunto(s)
Antineoplásicos/química , Productos Biológicos/química , Mitosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Proliferación Celular/efectos de los fármacos , Segregación Cromosómica , Células HCT116 , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Microtúbulos/química , Microtúbulos/efectos de los fármacos , Mitosis/genética , Neoplasias/genética
18.
Sci Rep ; 11(1): 23665, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880347

RESUMEN

We reveal the effects of a new microtubule-destabilizing compound in human cells. C75 has a core thienoisoquinoline scaffold with several functional groups amenable to modification. Previously we found that sub micromolar concentrations of C75 caused cytotoxicity. We also found that C75 inhibited microtubule polymerization and competed with colchicine for tubulin-binding in vitro. However, here we found that the two compounds synergized suggesting differences in their mechanism of action. Indeed, live imaging revealed that C75 causes different spindle phenotypes compared to colchicine. Spindles remained bipolar and collapsed after colchicine treatment, while C75 caused bipolar spindles to become multipolar. Importantly, microtubules rapidly disappeared after C75-treatment, but then grew back unevenly and from multiple poles. The C75 spindle phenotype is reminiscent of phenotypes caused by depletion of ch-TOG, a microtubule polymerase, suggesting that C75 blocks microtubule polymerization in metaphase cells. C75 also caused an increase in the number of spindle poles in paclitaxel-treated cells, and combining low amounts of C75 and paclitaxel caused greater regression of multicellular tumour spheroids compared to each compound on their own. These findings warrant further exploration of C75's anti-cancer potential.


Asunto(s)
Isoquinolinas/farmacología , Microtúbulos/efectos de los fármacos , Mitosis/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Polos del Huso/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Colchicina/farmacología , Humanos , Isoquinolinas/química , Microtúbulos/metabolismo , Tiofenos/química
19.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819364

RESUMEN

Mitotic errors can activate cyclic GMP-AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase. Micronuclei consistently recruited cGAS without activating it. Instead, IFN signaling correlated with formation of cGAS-coated chromatin bridges that were selectively generated by microtubule stabilizers and MPS1 inhibitors. cGAS activation by chromatin bridges was suppressed by drugs that prevented cytokinesis. We confirmed cGAS activation by chromatin bridges in cancer lines that are unable to secrete IFN by measuring paracrine transfer of 2'3'-cGAMP to fibroblasts, and in mouse cells. We propose that cGAS is selectively activated by self-chromatin when it is stretched in chromatin bridges. Immunosurveillance of cells that fail mitosis, and antitumor actions of taxanes and MPS1 inhibitors, may depend on this effect.


Asunto(s)
Cromatina/fisiología , Mitosis/fisiología , Nucleotidiltransferasas/metabolismo , Línea Celular Tumoral , Cromatina/genética , Humanos , Interferón Tipo I/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Micronúcleo Germinal/genética , Micronúcleo Germinal/fisiología , Mitosis/efectos de los fármacos , Mitosis/genética , Neoplasias/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/fisiología , Transducción de Señal
20.
Mol Cell ; 81(24): 5007-5024.e9, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34767771

RESUMEN

As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.


Asunto(s)
Proliferación Celular , Ensamble y Desensamble de Cromatina , Neoplasias Colorrectales/enzimología , ADN-Topoisomerasas de Tipo I/metabolismo , Fase G1 , Mitosis , ARN Polimerasa II/metabolismo , Transcripción Genética , Proliferación Celular/efectos de los fármacos , Secuenciación de Inmunoprecipitación de Cromatina , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN-Topoisomerasas de Tipo I/genética , Fase G1/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Inhibidores mTOR/farmacología , Mitosis/efectos de los fármacos , ARN Polimerasa II/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA